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Simple Random Walks and
Brownian Motion

Random walks are a discrete model of random mo-
tion. In a one-dimensional simple random walk, the
walker starts at the origin and steps right with prob-
ability p and left with probability 1− p.

Figure: A one-dimensional simple random walker

Brownian motion is the continuous analog of ran-
dom walks. A Brownian Motion B(t) is a random
function such that:
•B has independent increments.
•The increments are Normal/Gaussian.
•B is a continuous function.
It is known that a simple random walk converges
to a Brownian Motion. That is to say, if we let
S(t) be a simple symmetric random walk and define
Bn(t) = S(nt) where nt ∈ N and linearly interpo-
late otherwise, then Bn(t)√

n ⇒ B(t) as n → ∞ where
B(t) is a Brownian motion.

Figure: Convergence of a Random Walk to Brownian Motion

Excited Random Walks and
Perturbed Brownian Motion

A random walk can be thought of as a series of coin
flips that determine a walker’s movement along the
integers. If the coin displays heads, the walker will
take a step to the right, and he will take a step to the
left if the coin displays tails. For an excited random
walk (ERW), there is a stack of cookies at each site.
Each cookie biases the coin, causing it to display
heads with probability pj and tails with probability
1− pj for pj ∈ (0, 1) where j is the number of times
the walker has visited that site. When the walker
moves away from a site, he eats the cookie at the
top of the stack at that site. Once all of the cookies
at a site have been eaten, a fair coin is used, so the
walker will step left or right from that site with equal
probability.

Figure: Example of a cookie random walk with two cookies

A Perturbed Brownian Motion is a Brownian Mo-
tion whose path is affected by its maximum and
minimum. For fixed α, β ∈ (−∞, 1), an (α, β)-
perturbed Brownian Motion is a stochastic process
{X(t)}t≥0 that is continuous and a solution to

X(t) = B(t) + α sup
s≤t

X(s) + β inf
s≤t

X(s)

where B(t) is a standard Brownian Motion. It is
known that the scaling limit of recurrent excited ran-
dom walks is a perturbed Brownian motion and is
conjectured that some types of self-interacting ran-
dom walks converge to a perturbed Brownian Mo-
tion, so we will be exploring the results of some
statistical tests run on simulations of two types of
self-interacting random walks to check for potential
convergence to perturbed Brownian Motion.

Have Your Cookie and Eat It
Random Walks

Figure: Example of a Have Your Cookie and Eat it Random
Walk

A Have Your Cookie and Eat It Random Walk is
type of self-interacting random walk with one cookie
of strength p. However, the cookie is only eaten
when the walker steps left from a site. Therefore,
the probability of stepping right from each site is p
if only right steps have been taken from the site and
1/2 if at least one left step has been taken from that
site. It is known that when p ∈ (0, 2/3) the ran-
dom walk is recurrent. It is conjectured that when
the random walk in our simulation is recurrent it
converges to a (θ, θ̃)-perturbed Brownian Motion,
where θ = 2p−1

1−p and θ̃ = 1−2p
1−p .

Statistical Tests

The following are facts about a perturbed Brownian
motion:
•The amount of time spend to the right of the
origin in a (θ, θ̃)-Perturbed Brownian Motion
follows a Beta(1−θ̃

2 ,
1−θ

2 ) distribution.
•For a (θ, θ̃)-Perturbed Brownian Motion X(t),

Y (t) = X(t)− θ sup
s≤t

X(s)− θ̃ inf
s≤t

X(s)

has the same properties as a Brownian Motion.
In particular, a Brownian Motion has
independent increments and Gaussian increments.

We used MATLAB to simulate a Have Your Cookie
and Eat It random walk and used Chi-Square tests
for goodness of fit and independence to test for these
properties in the data from our simulation.

Results

We did simulations of 1,000 runs of the random walk,
each with 10,000,000 steps.

p p-value Conclusion
0.6 0.7838 Fail to Reject
0.55 0.4843 Fail to Reject
0.57 0.5890 Fail to Reject
0.53 0.5549 Fail to Reject
0.62 0.2136 Fail to Reject

Table: Results of Chi-Square tests for goodness of fit for the
fraction of time to right of the origin to a Beta(1−θ̃

2 ,1−θ2 )
distribution

p p-value Conclusion
0.6 0.1786 Fail to Reject
0.55 0.8720 Fail to Reject
0.57 0.8899 Fail to Reject
0.53 0.5512 Fail to Reject
0.62 0.1952 Fail to Reject

Table: Results of Chi-Square tests for goodness of fit of Y (n)√
n to

a Normal distribution

p Test Statistic Cut-Off Value Conclusion
0.6 62.7071 76.154 Fail to Reject
0.55 49.3502 76.154 Fail to Reject
0.57 41.551 76.154 Fail to Reject
0.53 60.2915 76.154 Fail to Reject
0.62 54.0846 76.154 Fail to Reject

Table: Results of Chi-Square tests for Independence of Y (n/2)√
n

and Y (n)−Y (n/2)√
n
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